呋虫胺及其代谢物在水稻生态系统中的残留检测与消解动态
投稿时间:2018-01-11      点此下载全文 HTML
引用本文:葛会林,谢德芳,郑雪虹,等.呋虫胺及其代谢物在水稻生态系统中的残留检测与消解动态[J].农药学学报,2019,21(2):211-218.
摘要点击次数: 3595
全文下载次数: 1010
作者单位E-mail
葛会林 中国热带农业科学院 分析测试中心/农业农村部热作产品质量安全风险评估实验室(海口)/海南省热带果蔬产品质量安全重点实验室, 海口 571101 huilinge@126.com 
谢德芳 中国热带农业科学院 分析测试中心/农业农村部热作产品质量安全风险评估实验室(海口)/海南省热带果蔬产品质量安全重点实验室, 海口 571101  
郑雪虹 广州海洋地质调查局, 广州 510075  
吕岱竹 中国热带农业科学院 分析测试中心/农业农村部热作产品质量安全风险评估实验室(海口)/海南省热带果蔬产品质量安全重点实验室, 海口 571101  
李萍萍 中国热带农业科学院 分析测试中心/农业农村部热作产品质量安全风险评估实验室(海口)/海南省热带果蔬产品质量安全重点实验室, 海口 571101  
陶珊珊 华中农业大学 植物科学技术学院, 武汉 430070  
基金项目:海南省自然科学基金(317221);农业农村部农药残留试验项目(2014P079);海南省应用技术研发与示范推广专项(ZDXM20130043)
中文摘要:为评价呋虫胺在水稻生态系统中的残留与消解行为,分别在海南、湖南和黑龙江省3地进行了规范残留试验。建立了超高效液相色谱-串联质谱(UPLC-MS/MS)检测呋虫胺(DNF)及其代谢物1-甲基-3-[(3-四氢呋喃)甲基]脲(UF)与1-甲基-3-[(3-四氢呋喃)甲基]二氢胍盐(DN)在水稻稻株、土壤、田水、糙米和稻壳中残留的分析方法。样品经含体积分数为1%的乙酸水溶液或乙腈溶液提取,QuEChERS方法净化,以甲醇-水混合溶液为流动相梯度洗脱,多反应监测(MRM)模式扫描,外标法定量。结果表明:3种分析物的进样浓度与其峰面积之间呈良好线性相关,R2>0.999。DNF、UF和DN在稻株、土壤、田水、糙米和稻壳中的平均回收率在71%~102%之间,在稻株、土壤、田水和糙米中的相对标准偏差(RSD)在1.2%~8.3%之间,在稻壳中的RSD在4.4%~20%之间。3种分析物在稻株、土壤、田水、糙米和稻壳中的最低检测浓度(LOQ)分别为0.1 mg/kg、0.02 mg/kg、0.01 mg/L、0.02 mg/kg和0.1 mg/kg。DNF、UF和DN的最小检出量分别为1、0.4和4 pg。3种分析物的消解半衰期分别为:DNF在稻株上为0.41~2.7 d,土壤中为1.6~4.2 d,田水中为0.90~2.2 d;DN在稻株上为2.9~13 d,土壤中为64~65 d,田水中为4.2 d;UF在稻株上为0.43~3.1 d。20%呋虫胺悬浮剂以有效成分120~180 g/hm2的剂量于水稻抽穗期施用2~3次,施药间隔期21 d,分别于距末次施药后14 d与21 d采收,呋虫胺在糙米中的残留最大值为0.11 mg/kg,低于中国制定的其在糙米上的最大残留限量标准1 mg/kg。
中文关键词:呋虫胺  代谢物  水稻  残留  消解  超高效液相色谱-串联质谱 (UPLC-MS/MS)
 
Residues determination and dissipation dynamics of dinotefuran and its metabolites in rice ecosystem
Abstract:To evaluate the residue and dissipation behavior of dinotefuran in rice ecosystem, the residual trial of dinotefuran in rice were carried out in Hainan, Hunan and Heilongjiang. A new method for the residue determination of dinotefuran (DNF) and its metabolites 1-methyl-3-(tetrahydro-3-furylmethyl)urea (UF) and 1-methyl-3-(tetrahydro-3-furylmethyl)guanidine (DN) in soil, paddy water, rice plant, brown rice, and rice husk was developed using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The samples were extracted by acetonitrile or water containing 1% acetic acid, purified by QuEChERS method, gradiently eluted in aqueous solution containing methnol and water, and quantified by external standard method. Results showed that there was a good linear correlation between the concentrations of the three analytes and their peak areas with R2 higher than 0.999. The limits of detection (LOD) of DNF, UF and DN were 1, 0.4, and 4 pg, respectively. The limits of quantification (LOQ) of dinotefuran and its metabolites in rice plant, soil, paddy water, brown rice and rice husk were 0.1 mg/kg, 0.02 mg/kg, 0.01 mg/L, 0.02 mg/kg, and 0.1 mg/kg, respectively. The average recoveries of the three analytes varied from 71% to 102% with the relative standard deviation (RSD) ranged from 1.2% to 8.3%. However, the RSD in rice husk was from 4.4% to 20%. For the dissipation half-lives, DNF in rice plant was 0.41-2.7 d, DNF in soil was 1.6-4.2 d, DNF in paddy water was 0.90-2.2 d; DN in rice plant was 2.9-13 d, DN in soil was 64-65 d, DN in paddy water was 4.2 d; and UF in rice plant was 0.43-3.1 d. The 20% suspension concentrate of dinotefuran was evenly sprayed at 120-180 g a.i./hm2 for 2 to 3 times in the heading stage of rice with a 21-day interval between sprays. The highest residue of dinotefuran in brown rice sampled at day 14 and 21 after the last pesticide application was 0.11 mg/kg, which is below the maximum residue limit 1 mg/kg of brown rice set by China.
Key words:dinotefuran  metabolites  rice  residue  dissipation  ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS)
查看全文   查看/发表评论   下载PDF阅读器